[10:30am] Channel Impairments

- The channel (between transmitter and receiver) can degrade the signal
- Channel can be any medium in which waves propagate
 - Air (electromagnetic)
 - Underwater (acoustic)
 - Wire (electromagnetic, optical)
- In the same medium, different frequency bands have different channel properties
- Lower frequencies (and therefore larger wavelength) require larger antenna
 - Higher frequencies lead to smaller antennas that can be integrated into a device, e.g. smartphone.
- Many factors can lead to an overall loss in signal strength
 - Loss as a function of distance *r*
 - Spherical geometric spreading leads to $1/r^2$ loss in signal power
 - Cylindrical geometric spreading leads to 1/r loss in power
 - Loss due to physical barriers
 - Each door, window, and wall in a building causes 10 dB attenuation
 - Other forms of attenuation (other than geometric spreading) occur at higher frequencies
- Fading: attenuation may change over time. Many possible causes
 - Transmitter or receiver in motion
 - Multipath propagation
 - Weather
- Benefits of higher frequency bands
 - More availability of large uninterrupted bands
 - Example: WiGig (several GHz of bandwidth)
- Challenges of higher frequency bands
 - Ultimately limited by transistor switching speeds
 - Analog designs have additional design complexity

- Additive thermal noise
 - Random motion of electrons
 - Approximate as Gaussian (central limit theorem)
- (approximate) LTI effects
 - Resistance, capacitance, and inductance of wired channel
 - Multipath propagation of wireless channel
 - Approximate IIR response as FIR by truncating
 - \circ $\;$ Model as convolution with a channel impulse response $\;$
 - Distortion in frequency
 - Spreading in time